Tool-Calling Accuracy in AI Agents: Building Reliable Multi-Tool Systems

August 29, 2025

The Tool Selection Problem

Modern AI agents don't work in isolation—they have access to dozens or even hundreds of tools, from web search and database queries to file processing and API calls. But here's the challenge: how do you know if your agent is choosing the right tool for each task?

Tool selection accuracy is one of the most critical yet underappreciated aspects of AI agent performance. An agent that can reason brilliantly but consistently chooses the wrong tool is essentially useless. Yet most teams build multi-tool agents without any systematic way to measure or improve tool selection accuracy.

At Mastra, we faced this challenge while building agents with 20+ tools each. We needed a system that could evaluate not just whether an agent used a tool, but whether it used the right tool for each specific context. Here's how we built a comprehensive tool accuracy evaluation system that actually improves agent reliability.

Understanding Tool Selection Complexity

Tool calling accuracy isn't just about having clear tool descriptions. It's about understanding context, constraints, and user intent in complex scenarios:

Scenario 1: Overlapping Tool Functionality

const tools = [
  {
    name: 'searchWeb',
    description: 'Search the internet for current information'
  },
  {
    name: 'searchDocumentation', 
    description: 'Search internal documentation and knowledge base'
  },
  {
    name: 'searchDatabase',
    description: 'Query structured data from the database'
  }
];

User query: "Find information about our API rate limits"

The agent needs to understand that this requires searchDocumentation, not searchWeb or searchDatabase, despite all three tools being capable of "finding information."

Scenario 2: Sequential Tool Dependencies

const workflowTools = [
  { name: 'downloadFile', description: 'Download file from URL' },
  { name: 'extractText', description: 'Extract text from document' },
  { name: 'generateSummary', description: 'Create summary from text' },
  { name: 'saveToDatabase', description: 'Save data to database' }
];

User query: "Process this PDF and save a summary"

The agent must understand the correct sequence: downloadFileextractTextgenerateSummarysaveToDatabase.

Scenario 3: Context-Dependent Tool Selection

const contextualTools = [
  { name: 'sendEmail', description: 'Send email to recipients' },
  { name: 'createSlackMessage', description: 'Post message to Slack' },
  { name: 'scheduleNotification', description: 'Schedule future notification' }
];

User query: "Remind the team about tomorrow's meeting"

The correct tool depends on context: company communication preferences, urgency, timing, and team location.

Tool Accuracy Evaluation Framework

Our tool accuracy scorer addresses these complexities with a comprehensive evaluation framework:

export function createToolCallAccuracyScorerLLM({
  model,
  options,
}: {
  model: MastraLanguageModel;
  options?: ToolCallAccuracyOptions;
}) {
  const scale = options?.scale || 1;

  return createScorer<ScorerRunInputForAgent, ScorerRunOutputForAgent>({
    name: 'Tool Call Accuracy (LLM)',
    description: 'Evaluates whether the LLM selects the correct tool from available options',
    judge: {
      model,
      instructions: TOOL_CALL_ACCURACY_INSTRUCTIONS,
    },
  })
    .analyze({
      description: 'Analyze tool selection accuracy across multiple dimensions',
      outputSchema: toolAccuracyAnalysisSchema,
      createPrompt: ({ run }) => {
        const userPrompt = getUserMessageFromRunInput(run.input) ?? '';
        const agentResponse = getAssistantMessageFromRunOutput(run.output) ?? '';
        const toolCalls = extractToolCallsFromOutput(run.output) ?? [];
        const availableTools = extractAvailableToolsFromInput(run.input) ?? [];

        if (!userPrompt || toolCalls.length === 0) {
          throw new Error('User prompt and tool calls are required for tool accuracy scoring');
        }

        return createToolAnalysisPrompt({
          userPrompt,
          agentResponse,
          toolCalls,
          availableTools,
        });
      },
    })
    .generateScore(({ results }) => {
      const analysis = results.analyzeStepResult;

      if (!analysis) {
        return 0; // Default to 0 if analysis fails
      }

      /**
       * Tool Call Accuracy Scoring Algorithm
       *
       * Evaluates multiple dimensions:
       * 1. Correct tool selection (40%)
       * 2. Appropriate parameter usage (25%)
       * 3. Tool sequence logic (20%)
       * 4. Context awareness (15%)
       */

      const weights = {
        toolSelection: 0.4,
        parameterUsage: 0.25,
        sequenceLogic: 0.2,
        contextAwareness: 0.15,
      };

      const scores = {
        toolSelection: analysis.toolSelectionScore,
        parameterUsage: analysis.parameterUsageScore,
        sequenceLogic: analysis.sequenceLogicScore,
        contextAwareness: analysis.contextAwarenessScore,
      };

      const weightedScore = Object.entries(weights).reduce(
        (total, [dimension, weight]) => total + scores[dimension] * weight,
        0
      );

      // Apply penalties for critical errors
      let finalScore = weightedScore;
      
      if (analysis.criticalErrors?.length > 0) {
        const errorPenalty = Math.min(analysis.criticalErrors.length * 0.2, 0.6);
        finalScore = Math.max(0, finalScore - errorPenalty);
      }

      // Apply bonus for exceptional tool usage
      if (analysis.exceptionalUsage) {
        finalScore = Math.min(1, finalScore * 1.1);
      }

      return roundToTwoDecimals(finalScore * scale);
    })
    .generateReason({
      description: 'Generate explanation of tool accuracy evaluation',
      createPrompt: ({ run, results, score }) => {
        const userPrompt = getUserMessageFromRunInput(run.input) ?? '';
        const analysis = results.analyzeStepResult;

        if (!analysis) {
          return `Unable to analyze tool accuracy. Score: ${score}`;
        }

        return createToolReasonPrompt({
          userPrompt,
          score,
          analysis,
          scale,
        });
      },
    });
}

Comprehensive Analysis Schema

Our analysis schema captures multiple dimensions of tool usage:

const toolAccuracyAnalysisSchema = z.object({
  toolSelectionScore: z.number().min(0).max(1),
  toolSelectionReasoning: z.string(),
  
  parameterUsageScore: z.number().min(0).max(1),
  parameterUsageAnalysis: z.array(z.object({
    parameter: z.string(),
    expectedValue: z.string(),
    actualValue: z.string(),
    isCorrect: z.boolean(),
    reasoning: z.string(),
  })),
  
  sequenceLogicScore: z.number().min(0).max(1),
  sequenceAnalysis: z.object({
    expectedSequence: z.array(z.string()),
    actualSequence: z.array(z.string()),
    isLogicalOrder: z.boolean(),
    missingSteps: z.array(z.string()),
    unnecessarySteps: z.array(z.string()),
  }),
  
  contextAwarenessScore: z.number().min(0).max(1),
  contextFactors: z.array(z.object({
    factor: z.string(),
    importance: z.enum(['critical', 'important', 'minor']),
    handledCorrectly: z.boolean(),
    impact: z.string(),
  })),
  
  criticalErrors: z.array(z.string()).optional(),
  exceptionalUsage: z.boolean().optional(),
  
  alternativeApproaches: z.array(z.object({
    approach: z.string(),
    viability: z.enum(['better', 'equivalent', 'worse']),
    reasoning: z.string(),
  })),
  
  overallAssessment: z.string(),
});

This schema enables nuanced evaluation of tool usage across multiple dimensions.

Real-World Tool Selection Scenarios

Let me show you how our system evaluates complex, real-world tool selection scenarios:

Scenario: Multi-Step Document Processing

// Available tools for document processing agent
const documentTools = [
  {
    name: 'downloadFile',
    description: 'Download file from URL',
    parameters: {
      url: 'string',
      saveLocation: 'string (optional)'
    }
  },
  {
    name: 'extractText',
    description: 'Extract text content from document',
    parameters: {
      filePath: 'string',
      format: 'pdf | docx | txt'
    }
  },
  {
    name: 'translateText', 
    description: 'Translate text to different language',
    parameters: {
      text: 'string',
      targetLanguage: 'string',
      sourceLanguage: 'string (optional)'
    }
  },
  {
    name: 'generateSummary',
    description: 'Create concise summary of text',
    parameters: {
      text: 'string',
      maxLength: 'number (optional)',
      style: 'bullet-points | paragraph | executive'
    }
  },
  {
    name: 'saveToDatabase',
    description: 'Save processed content to database',
    parameters: {
      content: 'object',
      table: 'string',
      metadata: 'object (optional)'
    }
  }
];

// User request
const userQuery = "Download this Spanish PDF, translate it to English, create a bullet-point summary, and save it to our documents database";

// Expected tool sequence
const expectedSequence = [
  { tool: 'downloadFile', reasoning: 'Must download before processing' },
  { tool: 'extractText', reasoning: 'Extract text from PDF' },
  { tool: 'translateText', reasoning: 'Translate from Spanish to English' },
  { tool: 'generateSummary', reasoning: 'Create bullet-point summary' },
  { tool: 'saveToDatabase', reasoning: 'Save final result' }
];

Tool Selection Analysis

Our system evaluates this scenario across multiple dimensions:

const analyzeToolSequence = (
  toolCalls: ToolCall[],
  expectedSequence: ExpectedTool[],
  context: AnalysisContext
): SequenceAnalysis => {
  
  // 1. Tool Selection Accuracy
  const toolSelectionScore = evaluateToolSelection(toolCalls, expectedSequence);
  
  // 2. Parameter Correctness
  const parameterScore = evaluateParameters(toolCalls, context);
  
  // 3. Sequence Logic
  const sequenceScore = evaluateSequenceLogic(toolCalls, expectedSequence);
  
  // 4. Context Awareness
  const contextScore = evaluateContextAwareness(toolCalls, context);
  
  return {
    toolSelectionScore,
    parameterScore, 
    sequenceScore,
    contextScore,
    detailedAnalysis: generateDetailedAnalysis(toolCalls, expectedSequence, context)
  };
};

const evaluateToolSelection = (
  toolCalls: ToolCall[], 
  expectedSequence: ExpectedTool[]
): number => {
  let correctSelections = 0;
  
  for (let i = 0; i < Math.min(toolCalls.length, expectedSequence.length); i++) {
    if (toolCalls[i].name === expectedSequence[i].tool) {
      correctSelections++;
    }
  }
  
  // Penalize missing tools or extra unnecessary tools
  const selectionAccuracy = correctSelections / expectedSequence.length;
  const extraToolsPenalty = Math.max(0, toolCalls.length - expectedSequence.length) * 0.1;
  
  return Math.max(0, selectionAccuracy - extraToolsPenalty);
};

const evaluateParameters = (toolCalls: ToolCall[], context: AnalysisContext): number => {
  let totalParameterScore = 0;
  let parameterCount = 0;
  
  for (const toolCall of toolCalls) {
    const expectedParams = getExpectedParameters(toolCall.name, context);
    
    for (const [paramName, expectedValue] of Object.entries(expectedParams)) {
      parameterCount++;
      
      const actualValue = toolCall.parameters[paramName];
      if (actualValue === expectedValue) {
        totalParameterScore += 1;
      } else if (isSemanticallySimilar(actualValue, expectedValue)) {
        totalParameterScore += 0.8; // Partial credit for close matches
      } else if (actualValue && isValidForContext(actualValue, paramName, context)) {
        totalParameterScore += 0.5; // Partial credit for valid alternatives
      }
    }
  }
  
  return parameterCount > 0 ? totalParameterScore / parameterCount : 1;
};

const evaluateSequenceLogic = (
  toolCalls: ToolCall[], 
  expectedSequence: ExpectedTool[]
): number => {
  // Check for logical dependencies
  const dependencyViolations = checkDependencyViolations(toolCalls);
  
  // Check for correct ordering
  const orderingScore = checkToolOrdering(toolCalls, expectedSequence);
  
  // Check for missing critical steps
  const completenessScore = checkSequenceCompleteness(toolCalls, expectedSequence);
  
  const baseScore = (orderingScore + completenessScore) / 2;
  const violationPenalty = dependencyViolations.length * 0.2;
  
  return Math.max(0, baseScore - violationPenalty);
};

const evaluateContextAwareness = (
  toolCalls: ToolCall[], 
  context: AnalysisContext
): number => {
  const contextFactors = [
    {
      factor: 'language_detection',
      check: () => checkLanguageDetection(toolCalls, context),
      weight: 0.3
    },
    {
      factor: 'format_specification',
      check: () => checkFormatSpecification(toolCalls, context),
      weight: 0.25
    },
    {
      factor: 'destination_appropriateness',
      check: () => checkDestinationAppropriate(toolCalls, context),
      weight: 0.25
    },
    {
      factor: 'error_handling',
      check: () => checkErrorHandling(toolCalls, context),
      weight: 0.2
    }
  ];
  
  return contextFactors.reduce(
    (score, { check, weight }) => score + check() * weight,
    0
  );
};

Advanced Tool Selection Patterns

Pattern 1: Conditional Tool Usage

const conditionalToolScenario = {
  userQuery: "If the document is over 10 pages, create a summary. Otherwise, translate it directly.",
  expectedLogic: `
    1. downloadFile(url)
    2. extractText(filePath) 
    3. analyzeDocument(text) // Check page count
    4. IF pageCount > 10:
         generateSummary(text)
       ELSE:
         translateText(text)
    5. saveToDatabase(result)
  `,
  
  evaluationCriteria: {
    conditionalLogic: 'Agent must implement proper branching logic',
    documentAnalysis: 'Agent must analyze document properties before deciding',
    appropriateExecution: 'Agent must execute correct branch based on condition'
  }
};

const evaluateConditionalLogic = (toolCalls: ToolCall[]): ConditionalEvaluation => {
  // Look for evidence of conditional decision-making
  const hasAnalysisStep = toolCalls.some(call => 
    call.name.includes('analyze') || 
    call.name.includes('check') ||
    call.parameters.hasOwnProperty('condition')
  );
  
  const hasBranchingLogic = checkForBranchingEvidence(toolCalls);
  const appropriateEndResult = validateEndResult(toolCalls);
  
  return {
    hasConditionalLogic: hasAnalysisStep && hasBranchingLogic,
    logicScore: calculateLogicScore(hasAnalysisStep, hasBranchingLogic, appropriateEndResult),
    reasoning: generateConditionalReasoning(toolCalls)
  };
};

Pattern 2: Error Recovery and Fallbacks

const errorRecoveryScenario = {
  userQuery: "Download and process this document. If the primary source fails, try the backup URL.",
  expectedBehavior: `
    Agent should:
    1. Attempt primary download
    2. Detect failure and implement fallback
    3. Continue processing with backup source
    4. Handle graceful degradation if both fail
  `,
  
  toolSequenceOptions: [
    // Success path
    ['downloadFile(primary)', 'extractText', 'processContent'],
    // Fallback path  
    ['downloadFile(primary)', 'downloadFile(backup)', 'extractText', 'processContent'],
    // Full failure path
    ['downloadFile(primary)', 'downloadFile(backup)', 'reportError']
  ]
};

const evaluateErrorRecovery = (toolCalls: ToolCall[]): ErrorRecoveryEvaluation => {
  const hasRetryLogic = checkForRetryAttempts(toolCalls);
  const hasFallbackStrategy = checkForFallbackStrategy(toolCalls);
  const hasGracefulDegradation = checkForGracefulDegradation(toolCalls);
  
  return {
    resilienceScore: calculateResilienceScore(hasRetryLogic, hasFallbackStrategy, hasGracefulDegradation),
    recoveryStrategies: identifyRecoveryStrategies(toolCalls),
    robustnessRating: calculateRobustnessRating(toolCalls)
  };
};

Pattern 3: Parallel Tool Execution

const parallelExecutionScenario = {
  userQuery: "Process these three documents simultaneously and combine the results",
  optimizationOpportunities: [
    'Parallel downloads',
    'Concurrent text extraction', 
    'Simultaneous processing',
    'Efficient result aggregation'
  ],
  
  evaluationMetrics: {
    parallelismDetection: 'Agent identifies opportunities for parallel execution',
    efficiencyOptimization: 'Agent chooses efficient execution strategy',
    resultSynchronization: 'Agent properly synchronizes parallel results'
  }
};

const evaluateParallelExecution = (toolCalls: ToolCall[]): ParallelismEvaluation => {
  const parallelOpportunities = identifyParallelOpportunities(toolCalls);
  const actualParallelism = detectParallelExecution(toolCalls);
  const synchronizationQuality = evaluateSynchronization(toolCalls);
  
  return {
    parallelismScore: calculateParallelismScore(parallelOpportunities, actualParallelism),
    efficiencyGain: estimateEfficiencyGain(toolCalls),
    synchronizationScore: synchronizationQuality
  };
};

Tool Parameter Accuracy Analysis

Beyond tool selection, parameter accuracy is critical:

interface ParameterAccuracyAnalysis {
  parameter: string;
  expectedValue: any;
  actualValue: any;
  accuracyType: 'exact' | 'semantic' | 'contextual' | 'invalid';
  confidence: number;
  reasoning: string;
}

const analyzeParameterAccuracy = (
  toolCall: ToolCall,
  context: AnalysisContext
): ParameterAccuracyAnalysis[] => {
  const analyses: ParameterAccuracyAnalysis[] = [];
  
  for (const [paramName, actualValue] of Object.entries(toolCall.parameters)) {
    const expectedValue = inferExpectedValue(paramName, toolCall.name, context);
    
    const accuracy = determineParameterAccuracy(actualValue, expectedValue, paramName, context);
    
    analyses.push({
      parameter: paramName,
      expectedValue,
      actualValue,
      accuracyType: accuracy.type,
      confidence: accuracy.confidence,
      reasoning: accuracy.reasoning
    });
  }
  
  return analyses;
};

const determineParameterAccuracy = (
  actual: any,
  expected: any, 
  paramName: string,
  context: AnalysisContext
): AccuracyAssessment => {
  
  // Exact match
  if (actual === expected) {
    return {
      type: 'exact',
      confidence: 1.0,
      reasoning: 'Parameter value matches expected exactly'
    };
  }
  
  // Semantic similarity (e.g., "summary" vs "summarize")
  if (typeof actual === 'string' && typeof expected === 'string') {
    const similarity = calculateSemanticSimilarity(actual, expected);
    if (similarity > 0.8) {
      return {
        type: 'semantic',
        confidence: similarity,
        reasoning: `Parameter is semantically similar to expected (${(similarity * 100).toFixed(0)}% similarity)`
      };
    }
  }
  
  // Contextually appropriate (different but valid for the context)
  if (isContextuallyAppropriate(actual, paramName, context)) {
    return {
      type: 'contextual',
      confidence: 0.7,
      reasoning: 'Parameter value is contextually appropriate though different from expected'
    };
  }
  
  // Invalid
  return {
    type: 'invalid',
    confidence: 0.0,
    reasoning: 'Parameter value is inappropriate for the context and tool'
  };
};

Production Tool Accuracy Monitoring

In production, we continuously monitor tool selection patterns:

class ToolAccuracyMonitor {
  private accuracyMetrics = new Map<string, ToolMetrics>();
  private selectionPatterns = new Map<string, SelectionPattern[]>();
  
  recordToolUsage(
    agentId: string,
    context: string,
    toolsUsed: ToolCall[],
    expectedTools: string[],
    outcome: 'success' | 'failure' | 'partial'
  ): void {
    
    const accuracy = this.calculateAccuracy(toolsUsed, expectedTools);
    const efficiency = this.calculateEfficiency(toolsUsed, expectedTools);
    
    // Update metrics
    const metrics = this.getOrCreateMetrics(agentId);
    metrics.recordUsage(accuracy, efficiency, outcome);
    
    // Track selection patterns
    this.updateSelectionPatterns(agentId, context, toolsUsed);
    
    // Alert on degradation
    if (accuracy < 0.6) {
      this.alertToolAccuracyDegradation(agentId, accuracy, context);
    }
  }
  
  generateToolAccuracyReport(agentId: string): ToolAccuracyReport {
    const metrics= this.accuracyMetrics.get(agentId);
    const patterns= this.selectionPatterns.get(agentId) || [];
    
    if (!metrics) {
      throw new Error(`No metrics found for agent: ${agentId}`);
    }
    
    return {
      overallAccuracy: metrics.getOverallAccuracy(),
      toolSpecificAccuracy: metrics.getToolSpecificAccuracy(),
      commonMistakes: this.identifyCommonMistakes(patterns),
      improvementSuggestions: this.generateImprovementSuggestions(metrics, patterns),
      trends: metrics.getAccuracyTrends()
    };
  }
  
  private identifyCommonMistakes(patterns: SelectionPattern[]): CommonMistake[] {
    const mistakes: Map<string, MistakeInfo> = new Map();
    
    patterns.forEach(pattern => {
      pattern.incorrectSelections.forEach(mistake => {
        const key = `${mistake.expected}_${mistake.actual}`;
        const existing = mistakes.get(key) || {
          expectedTool: mistake.expected,
          actualTool: mistake.actual,
          frequency: 0,
          contexts: []
        };
        
        existing.frequency++;
        existing.contexts.push(pattern.context);
        mistakes.set(key, existing);
      });
    });
    
    return Array.from(mistakes.values())
      .sort((a, b) => b.frequency - a.frequency)
      .slice(0, 10); // Top 10 mistakes
  }
  
  private generateImprovementSuggestions(
    metrics: ToolMetrics, 
    patterns: SelectionPattern[]
  ): ImprovementSuggestion[] {
    const suggestions: ImprovementSuggestion[] = [];
    
    // Suggest better tool descriptions for commonly confused tools
    const confusedPairs = this.identifyConfusedToolPairs(patterns);
    confusedPairs.forEach(pair => {
      suggestions.push({
        type: 'tool_description',
        priority: 'high',
        description: `Improve tool descriptions to better distinguish between ${pair.tool1} and ${pair.tool2}`,
        specificActions: [
          `Add more specific use cases to ${pair.tool1} description`,
          `Include negative examples in ${pair.tool2} description`,
          `Add context hints for when to use each tool`
        ]
      });
    });
    
    // Suggest additional training examples for low-accuracy scenarios
    const lowAccuracyContexts = this.identifyLowAccuracyContexts(patterns);
    lowAccuracyContexts.forEach(context => {
      suggestions.push({
        type: 'training_examples',
        priority: 'medium',
        description: `Add more training examples for ${context.name} scenarios`,
        specificActions: [
          `Create examples showing correct tool selection for ${context.name}`,
          `Add edge cases and boundary conditions`,
          `Include step-by-step reasoning examples`
        ]
      });
    });
    
    return suggestions;
  }
}

Tool Accuracy in Multi-Agent Systems

When multiple agents work together, tool accuracy becomes even more critical:

interface MultiAgentToolCoordination {
  agentId: string;
  toolCapabilities: string[];
  specializations: string[];
  coordinationProtocol: CoordinationProtocol;
}

const evaluateMultiAgentToolAccuracy = (
  scenario: MultiAgentScenario,
  agentActions: AgentAction[]
): MultiAgentEvaluation => {
  
  // Evaluate tool distribution across agents
  const toolDistribution = analyzeToolDistribution(agentActions);
  
  // Check for redundant tool usage
  const redundancy = detectToolRedundancy(agentActions);
  
  // Evaluate coordination efficiency
  const coordination = evaluateCoordination(agentActions);
  
  // Check for gaps in tool coverage
  const coverage = analyzeToolCoverage(scenario, agentActions);
  
  return {
    distributionScore: calculateDistributionScore(toolDistribution),
    redundancyPenalty: calculateRedundancyPenalty(redundancy),
    coordinationScore: coordination.score,
    coverageScore: coverage.score,
    
    recommendations: [
      ...generateDistributionRecommendations(toolDistribution),
      ...generateCoordinationRecommendations(coordination),
      ...generateCoverageRecommendations(coverage)
    ]
  };
};

The Business Impact

Our comprehensive tool accuracy evaluation has delivered significant improvements:

Agent Reliability

  • Tool selection accuracy: Improved from 68% to 91%
  • Task completion rate: Increased by 45%
  • User satisfaction: Improved from 3.2/5 to 4.6/5
  • Error rate: Reduced by 73%

Development Velocity

  • Debug time: 60% reduction in time to identify tool selection issues
  • Agent iteration speed: 3x faster improvement cycles
  • Quality assurance: Automated detection of tool accuracy regressions

Operational Benefits

  • Support tickets: 80% reduction in tool-related user issues
  • Manual intervention: 90% reduction in cases requiring human correction
  • System reliability: 99.1% uptime for tool-dependent workflows

Advanced Tool Selection Strategies

Based on our evaluation insights, we developed several advanced tool selection strategies:

Strategy 1: Context-Aware Tool Ranking

const contextAwareToolRanking = (
  availableTools: Tool[],
  context: RequestContext,
  userQuery: string
): RankedTool[] => {
  
  return availableTools.map(tool => ({
    ...tool,
    contextScore: calculateContextScore(tool, context),
    queryRelevance: calculateQueryRelevance(tool, userQuery),
    historicalAccuracy: getHistoricalAccuracy(tool.name, context.type),
    
    finalScore: calculateFinalToolScore(tool, context, userQuery)
  })).sort((a, b) => b.finalScore - a.finalScore);
};

Strategy 2: Dynamic Tool Description Enhancement

const enhanceToolDescription = (
  tool: Tool,
  context: RequestContext,
  recentMistakes: ToolMistake[]
): EnhancedTool => {
  
  const baseDescription = tool.description;
  const contextualHints = generateContextualHints(tool, context);
  const negativeExamples = generateNegativeExamples(tool, recentMistakes);
  const useCaseExamples = generateUseCaseExamples(tool, context.type);
  
  return {
    ...tool,
    description: `${baseDescription}

Context-specific usage:
${contextualHints}

When NOT to use this tool:
${negativeExamples}

Example scenarios:
${useCaseExamples}`
  };
};

Strategy 3: Predictive Tool Suggestion

const predictOptimalTools = (
  userQuery: string,
  context: RequestContext,
  historicalPatterns: ToolPattern[]
): ToolPrediction[] => {
  
  // Analyze query semantics
  const queryFeatures = extractQueryFeatures(userQuery);
  
  // Find similar historical patterns
  const similarPatterns = findSimilarPatterns(queryFeatures, historicalPatterns);
  
  // Generate predictions with confidence scores
  return similarPatterns.map(pattern => ({
    recommendedTools: pattern.successfulTools,
    confidence: pattern.successRate,
    reasoning: pattern.reasoningPattern,
    alternativeApproaches: pattern.alternatives
  }));
};

Building reliable multi-tool AI agents requires more than just providing good tool descriptions. It requires systematic evaluation, continuous monitoring, and intelligent optimization of tool selection patterns.

Our tool accuracy evaluation system has transformed how we build and deploy AI agents, ensuring they consistently choose the right tool for each task. The result is agents that users can trust to handle complex, multi-step workflows reliably and efficiently.